9-2-2019

С2н4 н2 уравнение реакции

Этилен
Общие
Хим. формула C2H4
Физические свойства
Молярная масса 28,05 г/моль
Плотность 0,001178 г/см³
Термические свойства
Т. плав. −169,2 °C
Т. кип. −103,7 °C
Т. всп. 136,1 °C
Т. свспл. 475,6 °C
Классификация
Рег. номер CAS 74-85-1
PubChem 6325
Рег. номер EINECS 200-815-3
SMILES
RTECS KU5340000
ChEBI 18153
ChemSpider 6085
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Этиле́н (по ИЮПАК: этен) — органическое химическое соединение, описываемое формулой С2H4. Является простейшим алкеном (олефином). При нормальных условиях — бесцветный горючий газ легче воздуха со слабым сладковатым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.

Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном. Этилен — самое производимое органическое соединение в мире [1] ; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2—3 % в год [2] . Этилен обладает наркотическим действием. Класс опасности — четвёртый [3] .

Содержание

Получение [ править | править код ]

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид. После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство сначала в Великобритании, а позднее и в других странах.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при +800-950 °С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30 %. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15-25 %. Наибольший выход этилена — до 50 % — достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учётных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 «Этилен и пропилен. Методы отбора проб». Отбор пробы этилена может производиться и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 «Этилен. Технические условия».

Структура производства [ править | править код ]

В настоящее время в структуре производства этилена 64 % приходится на крупнотоннажные установки пиролиза,

17 % — на малотоннажные установки газового пиролиза,

11 % составляет пиролиз бензина и 8 % падает на пиролиз этана.

Применение [ править | править код ]

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

Чтать также:  Можно ли после ингаляции кушать детям

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 1980-х годов в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений [4] , среди прочего [5] отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы [ править | править код ]

Атомы углерода находятся во втором валентном состоянии (sp 2 -гибридизация). В результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Основные химические свойства [ править | править код ]

Этилен — химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

  • Галогенирование:

C H 2 = C H 2 + B r 2 → C H 2 B r — C H 2 B r + D <displaystyle <mathsf <2>< ext<=>>CH_<2>+Br_<2>
ightarrow CH_<2>Br< ext<->>CH_<2>Br+D>>>Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

  • Гидрирование:

C H 2 = C H 2 + H 2 → N i C H 3 — C H 3 <displaystyle <mathsf <2>< ext<=>>CH_<2>+H_<2><xrightarrow[<>]>CH_<3>< ext<->>CH_<3>>>>

  • Гидрогалогенирование:

C H 2 = C H 2 + H B r → C H 3 C H 2 B r <displaystyle <mathsf <2>< ext<=>>CH_<2>+HBr
ightarrow CH_<3>CH_<2>Br>>>

  • Гидратация:

C H 2 = C H 2 + H 2 O → H + C H 3 C H 2 O H <displaystyle <mathsf <2>< ext<=>>CH_<2>+H_<2>O<xrightarrow[<>]>>CH_<3>CH_<2>OH>>>Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

  • Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль. Уравнение реакции [6] : 3 C H 2 = C H 2 + 2 K M n O 4 + 4 H 2 O → C H 2 O H — C H 2 O H + 2 M n O 2 + 2 K O H <displaystyle <mathsf <3CH_<2>< ext<=>>CH_<2>+2KMnO_<4>+4H_<2>O
ightarrow CH_<2>OH< ext<->>CH_<2>OH+2MnO_<2>+2KOH>>>

  • Горение:

C H 2 = C H 2 + 3 O 2 → 2 C O 2 + 2 H 2 O <displaystyle <mathsf <2>< ext<=>>CH_<2>+3O_<2>
ightarrow 2CO_<2>+2H_<2>O>>>

  • Полимеризация (получение полиэтилена):

n C H 2 = C H 2 → ( — C H 2 — C H 2 — ) n <displaystyle <mathsf <2>< ext<=>>CH_<2>
ightarrow (< ext<->>CH_<2>< ext<->>CH_<2>< ext<->>)_>>>

  • Димеризация [7]

2 C H 2 = C H 2 → C H 2 = C H — C H 2 — C H 3 <displaystyle <mathsf <2CH_<2>< ext<=>>CH_<2>
ightarrow CH_<2>< ext<=>>CH< ext<->>CH_<2>< ext<->>CH_<3>>>>

Биологическая роль [ править | править код ]

Этилен — первый из обнаруженных газообразных растительных гормонов, обладающий очень широким спектром биологических эффектов [8] . Этилен выполняет в жизненном цикле растений многообразные функции, среди которых контроль развития проростка, созревание плодов (в частности, фруктов) [9] , распускание бутонов (процесс цветения), старение и опадание листьев и цветков. Этилен называют также гормоном стресса, так как он участвует в реакции растений на биотический и абиотический стресс, и синтез его в органах растений усиливается в ответ на разного рода повреждения. Кроме того, являясь летучим газообразным веществом, этилен осуществляет быструю коммуникацию между разными органами растений и между растениями в популяции, что важно. в частности, при развитии стресс-устойчивости [10] .

К числу наиболее известных функций этилена относится развитие так называемого тройного ответа у этиолированных (выращенных в темноте) проростков при обработке этим гормоном. Тройной ответ включает в себя три реакции: укорочение и утолщение гипокотиля, укорочение корня и усиление апикального крючка (резкий изгиб верхней части гипокотиля). Ответ проростков на этилен крайне важен на первых этапах их развития, так как способствует пробивание ростков к свету [10] .

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов, в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола. Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов [11] .

Чтать также:  Какие процессы происходят в легких

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). В 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов. [8] В 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен [12] . Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев [13] . Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен. [14] . В 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста [15] .

Этилен образуется практически во всех частях высших растений, включая листья, стебли, корни, цветки, мякоть и кожуру плодов и семена. Образование этилена регулируется множеством факторов, включая как внутренние факторы (например фазы развития растения), так и факторы внешней среды. В течение жизненного цикла растения, образование этилена стимулируется в ходе таких процессов, как оплодотворение (опыление), созревание плодов, опадание листьев и лепестков, старение и гибель растения. Образование этилена стимулируется также такими внешними факторами, как механическое повреждение или ранение, нападение паразитов (микроорганизмов, грибков, насекомых и др.), внешние стрессы и неблагоприятные условия развития, а также некоторыми эндогенными и экзогенными стимуляторами, такими, как ауксины и другие [16] .

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов.

Чтать также:  Пьяный икает что делать

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arab >[17] . Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий [8] .

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей [18] .

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида, который обладает способностью алкилировать ДНК и белки, в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина — N-гидроксиэтил-валин) [19] . Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза [20] . Эндогенный этиленоксид также является мутагеном [21] [22] . С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и соответственно этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы значительно ниже.

C2H4+3O2=2CO2+2H2O Всё уравнено)))

Если ответ по предмету Химия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Ответ или решение 1

C2H4 + HCl ——-> C2H5Cl

С2Р4 + Сl2 ———> C2H4Cl2

Эти две реакции реакции являются реакциями электрофильного присоединения соответственно галогеноводорода и галогена к алкену, с выделением тепла, а так же в присутствии катализатора, Na, которая протекает по правилу Марковникова.В реакции при присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода. Реакция протекает в две стадии. На первой, медленной стадии происходит присоединение протона H + к двойной связи. На первой, медленной стадии происходит присоединение протона H + к двойной связи: при этом протон может связываться с одним из двух атомов углерода, образующих двойную связь. Образующиеся карбокатионы имеют различную энергию, так как положительный заряд в них делокализуется с разной эффективностью, образующих двойную связь.

Добавить комментарий

Ваш адрес email не будет опубликован.

Лимит времени истёк. Пожалуйста, перезагрузите CAPTCHA.